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Abstract—We autonomously pour from unknown symmetric
containers found in a typical wet laboratory for the development
of a robot-assisted, rapid experiment preparation system. The
robot estimates the pouring container symmetric geometry, then
leverages simulated pours as priors for a given fluid to pour
precisely and quickly in a single attempt. The fluid is detected
in the transparent receiving container by combining weight and
vision. The change of volume in the receiver is a function of the
geometry of the pouring container, the pouring angle, and rate.
To determine the volumetric flow rate, the profile for maximum
containable volume for a given angle is estimated along with
the time delay of the fluid exiting the container. A trapezoidal
trajectory generation algorithm prescribes the desired volumetric
flow rate as a function of the estimation accuracy. A hybrid
control strategy is then used to attenuate volumetric error. Three
methods are compared for estimating the volume-angle profile,
and it is shown that a combination of online system identification
and leveraged model priors results in reliable performance. The
major contributions of this work are a system capable of pouring
quickly and precisely from varying symmetric containers in a
single attempt with limited priors, and a novel fluid detection
method. This system is implemented on the Rethink Robotics
Sawyer and KUKA LBR iiwa manipulators.

I. INTRODUCTION
As the capabilities of autonomous robots increase, their

ability to assist humans in complex environments must also
increase. This work is motivated by the pharmaceutical wet-
lab industry, where research scientists perform repetitive ex-
periments with relatively small amounts of solution and active
ingredients. In this scenario, it is inefficient for scientists
to use large batch solution making machines, however con-
siderable time is spent making solutions for experiments.
The necessity is for an autonomous robot that is capable of
making such small batch solutions while requiring very little
environment augmentation as it works alongside the research
scientist collaborator. To be effective, the robot must be able
to manipulate containers already in use by the wet-lab as
well as pour precisely compared to a human counterpart.
The precision pouring problem can be decomposed into the
observation of the poured fluid, modeling of the flow dynamics
and controlling the pouring container to reach a target volume.
Previous work has investigated methods of detecting water in
flight [1], [2] as well as fluid in a cup when viewed from above
classified into 11 fill percentages [3]. The proposed method
measures the volume of fluid in the receiver by combining
both mass from scale and vision by detecting water pixels in
a transparent receiver.

Once the fluid is detected, the flow dynamics between the
containers must be modeled. In [4] and [5] system identi-
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Figure 1: The objective is to pour precisely from an unknown
container. We model the pouring rate (which depends on the
profile of maximum volume of fluid containable at a given
tilt angle), by estimating the container geometry (Figure 1a)
and then using model priors and online system identification
to identify the profile and pour precisely in a single attempt
(Figure 1b).

fication on model parameters is performed to improve the
performance of derived models. Motion primitives for the
pouring task were learned in [6], [7] and [8]. In [9] and
[10] transformations of points clouds from example containers
were morphed to observed containers and a corresponding
transformation was applied to the task space trajectory for
pouring. In [11] simulated pours are used to learn to mitigate
spillage. Our approach combines online system identification
with model priors leveraging the pouring container geometry,
as well as focuses on precise fluid transference assuming no
spillage as opposed to just emptying contents.

Once the pouring model has been identified, the system
must be controlled to pour the specified volume. In [4], [12],
[13] the angular rate of the pouring container is controlled
based on the known pouring model. Our approach utilizes a
hybrid control strategy that incorporates the process model
and estimated time delay in the plant. For this application,
our approach improves on [12] with an average pour error
and time of 38ml and 20 seconds with an accuracy within
10ml and average of 3ml with pour times varying from 20-45
seconds. Our approach improves on [4] and [13] in that we
pour precisely in a single attempt and are not confined to a
particular geometry given the pouring container is symmetric.

Our paper advances the state of the art in autonomous
pouring with an effective wet-lab solution preparation system
capable of a) Leveraging simulated containers and pours to
obtain pouring dynamics and expected plant time delay for a
new target container. b) Pouring target volumes quickly and
precisely leveraging system identification and model priors.
c) Combining vision and mass fluid detection methods to
obtain the received volume. The rest of the paper is organized
as follows: Section II-A presents the problem formulation.
Section II-B presents the model estimation techniques. Section
II-C discusses the real time volume estimation technique.
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Figure 2: The goal is to pour a specified amount of a known
fluid from container α to container β quickly and precisely.
The receiver volume Vβ is sensed (through weight and height
hβ) and the geometry of the pourer Γ is estimated. Vα,t and
Vα,θ are the transient and steady state volumes in α for a given
tilt angle θ.

Section II-D presents trajectory generation and control. Sec-
tion III discusses implementation details. Finally, results for
each method and performance across container geometries is
discussed in Section IV.

II. METHODOLOGY

A. Problem Formulation

Given a pouring container α, and receiving container β, the
goal of this work is to quickly and precisely pour a designated
amount of fluid. The general pouring problem is presented in
Figure 2 where both containers are open, and during pouring
only the volume in the receiver Vβ is detected. For symmetric
containers Γ specifies the radius of the container as a function
of height which is observed before pouring. In container α,
the volume of fluid above and below the pouring edge are
denoted as Vα,t and Vα,θ respectively and are the transient
and steady state volumes when α is held at tilt angle θ. We
call the function Vα,θ(θ) the volume angle profile. The height
of fluid in the receiver is denoted as hβ .

The generalized pouring problem is to consider the volumet-
ric flow rate between containers α and β and the dynamics of
the system are

V̇β(t+ tfall) = −V̇α(t)

V̇β(t+ tfall) = −
(
dVα,θ
dθ

∣∣∣∣
θ(t)

+
dVα,t
dθ

∣∣∣∣
θ(t)

)
dθ

dt

V̇β(t+ td) = − dVα,θ
dθ

∣∣∣∣
θ(t)︸ ︷︷ ︸

V
(1)
α,θ

dθ

dt
, (1)

where tfall is the fall time of the fluid from α to β, td is
the time delay for both the fall time and dissipation of Vα,t,
θ and dθ

dt are the angular position and velocity of the pouring
container. V (1)

α,θ denotes the derivative of Vα,θ with respect to θ.
Since we will only observe the receiving container, the volume
angle profile must be expressed in terms of container β. At

steady state the following holds

V
(1)
α,θ = −V (1)

β,θ , (2)

and for bounded velocity pours we will assert this equivalence
in (1). Defining the volumetric error as

eV (t) = Vβ,des(t)− Vβ(t), (3)

the goal is to determine the control input u(t) = dθ
dt that

achieves the desired volume

min
u(t)

∫
t

eV (t)2dt. (4)

The desired trajectory Vβ,des(t) is specified using a trape-
zoidal trajectory generation algorithm to minimize pouring
time, subject to velocity and acceleration constraints and is
discussed further in Section II-D. The generalized time delay
is an unknown function of the pouring container geometry, the
tilt angle and control input

td(t) = ft (Γ, θ(t), u(t− tu)) . (5)

We define tu to be the period of the controller, as the current
time delay is approximated with the last commanded velocity.
The time delay approximates the dissipation of Vα,t (which is
a function of Γ, θ and u) and tfall. We make the following
assumptions a) That the pours are slow enough that we can
make the substitution of (2) into (1). b) There is no spillage
during pouring and sloshing is insignificant for a sigmoid
desired trajectory and the specified maximum angular rotation
rate. c) The viscosity of the fluid is known, and at steady state
the fluid conforms to the geometry of the container. d) The
geometry of the receiving container is known. e) There is
enough fluid in the pouring container required to reach the
specified target volume in the receiver. f ) The fall time can
be approximated by a small constant. g) That similarity in
container geometry Γ correlates to similarity in volume profile
Vα,θ. h) The pouring container has a symmetric edge profile
for simplistic implementation in container scanning. But the
method extends to any container geometry.

Controller

u(t) = fu

(
eV , V

(1)
β,θ , td

) Plant

Model
Vβ,θ(t) = fV (Γ, θ)

td(t) = ft (Γ, θ, u(t− tu))

Vβ,des(t) [Vβ(t), θ(t)]

Estimator

Vβ(t)

Figure 3: Pouring Control Diagram. The desired volume is
specified by trajectory generator, the controller fu processes
this and the model approximations (fV and ft which must be
determined) in order to control the angular rate of the pouring
container.

The system control diagram is shown in Figure 3. The
models for Vβ,θ and td are informed by scanning the pouring
container geometry Γ.



B. Model Learning

We define the error (or distance) between two symmetric
container geometries Γ1,Γ2 as

eΓ =

∫ 1

0

(Γ1(H1s)− Γ2(H2s))
2
ds (6)

where H1 and H2 are the respective heights of the containers
and Γ(Hs) defines the radius for s ∈ [0, 1]. Our assumption
states that

lim
eΓ→0

Vβ,θ,1 = Vβ,θ,2, (7)

and is extended to the time delay in (5) for a given θ, u. The
training set of pouring container geometries are artificially
generated and used to simulate pouring with known fluid
properties as shown in Figure 5. The geometry of the pouring
container is scanned before pouring, and the top ten nearest
neighbors are then selected based on minimal distance eΓ. This
is then used to generate a mixture probability pj by

pj =
e−1

Γ,j∑
i e
−1
Γ,i

. (8)

If the new container profile can be interpolated from the
training set, then this mixture model will effectively describe
the new container profile with adequate resolution in the
space of example containers. However in practice this is
a strong assertion which is relaxed through adjusting the
kernel variance in addition to the mixture probability in semi-
parametric model approximation.

Combined Parametric and Non-Parametric Approximations:
We model the maximum volume profile Vβ,θ using three
methods: parametric, non-parametric and semi-parametric. The
parametric method approximates Vβ,θ using a polynomial of
9th degree

Vβ,θ(θ) = fV (θ) =

N∑
i=0

ciθ
i (9)

whose coefficients c minimize the following functional

Jθ =

C∑
j=1

(
Vβ,θ,j −

N∑
i=0

ciθ
i
j

)2

︸ ︷︷ ︸
Residual

+ k1

N∑
i=1

c2i︸ ︷︷ ︸
Regulator

+ k2 exp

(
−

M∑
m=1

N∑
i=1

iciθ
i−1
m

)
︸ ︷︷ ︸

Soft Constraint

. (10)

The residual term fits the polynomial to C volume obser-
vations in the receiver by minimizing the squared error, the
regulator term ensures the N coefficients do not diverge with
positive gain k1, and the soft constraint ensures the polynomial
derivative is positive at M control points (locations enforcing
constraint) evenly spaced over the entire pouring angle domain
which respects the physics that volume in the receiver β is
strictly increasing with positive gain k2.

The non-parametric method uses a Gaussian process (GP)
with the radial basis kernel function with white noise:

κ(θi, θj) = σ2 exp

(
− (θi − θj)2

l2

)
+ w. (11)

The variance is related to the edge profile error through σj =
k3e
−1
Γ,j with positive gain k3, and l is a distance scale factor.

The white noise w in the kernel is associated with the volume
milliliter measurement error. The covariance matrices for test-
train and train-train are defined as

K∗i,j = κ(θtest,i, θtrn,j) (12)

Ki,j = κ(θtrn,i, θtrn,j) (13)

and the information matrix as

L = (K + γ2I)−1. (14)

With these terms we define the non-parametric estimate

Vβ,θ(θ) = fV (Γ, θ) =
∑
j

pjK
∗
jLjVβ,θ,trn,j . (15)

The limitation of the parametric method is that it does not
leverage prior knowledge of similar containers when available.
Likewise, the limitation of the non-parametric method is that
it cannot adapt when the new container is drastically different
from the training set. By combining these methods, their
positive attributes can be leveraged for better performance
across a larger range of containers. This is done by making
the parametric profile estimation the mean of the GP:

Vβ,θ(θ) =

N∑
i=0

ciθ
i +

10∑
j=1

pjK
∗
jLj

(
Vβ,θ,trn,j −

N∑
i=0

ciθ
i
trn,j

)
.

(16)

The additional component is the last term which uses the cur-
rent parametric model to evaluate the training pours. The error
of the parametric function and true training volume is used to
adjust the expected value for Vβ,θ. If the parametric function is
a very good approximation, the error between the points in the
vector Vβ,θ,trn and the function evaluation becomes zero and
the parametric mean dominates. If the parametric mean is a
poor fit, but the container is interpolated well between example
containers, then the GP terms accommodates this error with
sufficient sampling of the points in the vector θtrn.

C. Real-Time Volume Estimation
We use a combination of visual feedback and weight

measurement to track the volume of the fluid in the receiving
container. For visual volume detection, the receiver is first
located the container in the scene via a fiducial. Once the
container is localized, we use a neural network to find the
probability that each pixel is water. As in [13], clustering
is used to distinguish between fluid entering the receiver
and contained rising fluid. With the known cross section this
provides an estimate of the volume of water in the receiving
container to be considered with the measured mass. A load cell
is used to obtain the weight of fluid in the receiver and the
volume estimate from both vision and weight are combined
using a Kalman filter whose details are in Section III-A.



D. Trajectory Planning and Control

Trajectory Generation: Trajectories for volume in the re-
ceiving container Vβ,des(t) are determined using the user
specified target volume, and specified upper and lower maxi-
mum velocities dependent on the current residual of the Vβ,θ
approximation. The area under the trapezoid is the target
volume. Respecting maximum allowable accelerations, time
optimal trajectories are computed in a similar implementation
to [14]. A key difference is the calculation of the maximum
velocity is a sigmoid function of the mean residual:

r̄ =
1

C

C∑
j

|Vβ,θ,pred,j − Vβ,θ,meas,j | , (17)

where this is evaluated for every new accumulated measure-
ment set C, and new model Vβ,θ which adjusts Vβ,θ,pred,j .
Given this residual, the maximum velocity is calculated using
the following function

V̇β,max(r̄) = V̇β,ml +
V̇β,mu

1 +
V̇β,ml

(V̇β,mu−V̇β,ml)

(
exp

(
k4

r̄
rmax

)) ,
(18)

where V̇β,ml, V̇β,mu are the lower and upper bounds on allow-
able maximum velocities and r̄ ∈ [0,∞) is the residual for
fitting Vβ,θ. The term rmax is a threshold residual ensuring
for large residual that V̇β,max ' V̇β,ml.

Proposed Controller: Given the trajectory generator spec-
ifies Vβ,des(t), the controller then uses the volume error eV
along with model estimates of the volume profile and time
delay Vβ,θ, td, to calculate the control output which is the
angular velocity of the container.

The hybrid controller is dependent on the following condi-
tions (a): θ ∈ [0, π], (b): V (1)

β,θ (θ) > 0, (c): V̇β > 0, and (d)
eV > 0

u(t) =



(
V

(1)
β,θ (θ(t))

)−1

(KpeV (t+ td)) if: (a) ∧ (b) ∧ (c)

δω if: (a) ∧ (d)∧
¬ ((b) ∧ (c))

0 if: ¬(a).
(19)

The third state stops motion if the angle is outside the
acceptable regions of operation. The second state (re)initiates
the pour. Hence when the container is in the operation domain
from condition (a) the first state is obtained.

Controller Stability: We present a stability analysis for the
first hybrid state, as the second state always results in the first
state unless there is not enough fluid in the container to pour
the target volume which violates a base assumption. Given the
current time T , the future error at T + td for time delay td is

eV (T + td) = Vβ,des(T + td)− Vβ(T + td)

= Vβ,des(T + td)−
∫ T

0

V
(1)
β,θ (θ(s))u(s)ds.

(20)

Figure 4: Volume in the receiver is detected combining vision
and weight. The volume is visually estimated by using a
fiducial to locate the receiver of known geometry then a
network detects fluid pixels. The detection is robust to fluid
color and transparency.

Consider the Lyapunov function V = 1
2e

2
V , the system is

asymptotically stable if V̇ < 0:

V̇ = eV ėV

= eV

(
V̇β,des(T + td)− V (1)

β,θ (θ(T ))u(T )
)
. (21)

Let u(T ) =
(
V

(1)
β,θ (θ(T ))

)−1

KpeV (T + td), then if

V̇β,des(T + td) = 0, then (21) reduces to

−Kpe
2
V < 0, (22)

which is true if Kp > 0 and the system is asymptotically
stable. If V̇β,des(T + td) > 0 then (21) stability condition
becomes

eV (T + td) > K−1
p V̇β,des(T + td). (23)

Hence the system will trail until the condition of (23) is true,
then when V̇β,des = 0 the error will attenuate to zero. Note
that a larger Kp will reduce the magnitude of eV required for
asymptotic stability in (23).

III. IMPLEMENTATION

A. Volume Measurement

Volume Detection: The receiving container is placed on
an illuminated stand. A 1280 × 1040 pixel Point Grey RGB
camera is mounted horizontally facing the container, and a
checkerboard background shown in Figure 1b is used to lever-
age distortion and occlusion for fluid detection. We use the
network architecture from Holistically-Nested Edge Detection,
a network that extracts multi-scale features from VGGNet
and uses them for pixel-wise edge detection [15]. The trained
network detects pixel masks that show the locations of water
(instead of detecting edges as in [15]) and runs at 21Hz on a
cropped 390× 412 pixel image based on the fiducial location.
Our visual system is able to calculate the height of the water
hβ for many different colors of water, ranging from clear to
completely opaque as shown in Figure 4.

The beaker is placed 42±5cm from the camera, the camera
is 6cm above the platform, and the receiver diameter is known
(in this experiment 3.64cm) as shown in (Figure 1b). This
makes the top of the fluid visible if the volume of fluid is



Figure 5: Artificial containers are generated to provide a
simulation of pouring liquid of known properties in NVIDIA
FleX [16].

below 250ml, with a maximal error of 1.04cm translating to
43ml at the onset of pouring. To mitigate this effect, similar
triangles are used to determine the true height of the container
as the fiducial provides both the beakers distance from the
camera, and pixel-metric scale factor in the fiducial plane. This
geometric adjustment is utilized when the height of fluid is
below the center pixel of the camera (which for this beaker
correlates to below 250ml). We also use a Uxcell 5kg load cell
with an Arduino Uno micro-controller to detect the weight
of the fluid in the receiving container which runs at 12Hz.
The receiver container sits on a suspended platform shown in
Figure 1b which is a cantilever with the load cell.

Sensor Fusion: Both the volume estimate from vision and
scale are combined using a Kalman filter running at 30Hz
to approximate the volume in the receiving container. The
associated uncertainties for the scale and vision are 1.5ml and
15ml respectively, the process noise was set to be 0.02ml. For
the vision, this is due to an 20pixel variance in detection of
fluid height.

B. Simulated Pouring
To obtain simulated pours we use NVIDIA FleX, a particle

based unified graphics solver from [16], to simulate pouring
liquids from different containers. We generated 1792 symmet-
ric containers randomly scaled between 5 and 20cm. Each
container is poured once in simulation (Figure 5) and the
Vβ,θ profile is generated by filling the container to the brim
with the liquid particles and slowly rotating the container. At
each time step, the quantity of liquid inside the container
is measured by counting the number of particles that were
inside the container’s mesh. Parameters in the FleX software
were empirically chosen to match behavior for real container
geometries for water at room temperature.

C. Volume Estimation and Attenuation
We establish a reference frame at the bottom, center of

the pouring container which is assumed to be a surface of
revolution (SOR). Given the 128 points along the edge of
the container, the edge-profile is defined by the set of vectors
consisting of each point height and radius. This edge-profile is
then compared with the edge profiles of simulated containers,
and the closest top 10 containers are selected. For trajectory
generation, we set the parameter k4 = 8 in (18).

(a) (b)

(c)

Figure 6: Container geometry is scanned, where we assume
a surface of revolution and represent the geometry with the
edge profile Figure 6c.

D. Volume Profile and Time Delay Estimation

Container Edge Extraction: We obtain the geometry of
the pouring container to compare to simulated container ge-
ometries to approximate the volume profile. For symmetric
containers it is sufficient to scan half of the container to extrap-
olate the entire geometry. We use the PMD Technologies Pico
Flexx time-of-flight depth sensor to extract the point cloud
of the container. RANSAC is used to distinguish between the
container and table points, then to approximate the container
with a set of cylinders every 1.5cm. The edge profile is then
extracted using a Gaussian process. This is shown in Figure 6,
where Figure 6a shows the container, Figure 6b shows the
extracted points and the fitted surface, and Figure 6c shows
the fitted cylinders radii and height and the resulting 128 points
from the GP fitting. During data collection, the surface of the
containers were augmented with form fitting paper for better
performance of the time of flight sensor.

Time Delay: We modeled the time delay in simulation by
rotating fully filled containers at randomly chosen, constant
angular velocities until they reached randomly chosen stop
angles. The time delay was defined as time to reach 20% of
the initial Vα,t from the stopping point. We simulated 3,888
trials for the time delay. A neural network consisting of three
convolutional layers for the edge profile and then five fully
connected layers combining the convolutional output and the
containers height, tilt angle and angular velocity is used to



predict the time delay by approximating ft in (5).

E. Pouring System

The full state machine was implemented on the KUKA LBR
iiwa manipulator for the KUKA innovation award and can
be found on YouTube: “Finalist Spotlight - Precise Robotic
Dispenser System - KUKA Innovation Award 2018”, and
“Kuka Innovation Award finalist: Precise Robotic Dispenser
System”. In these experiments for brevity we focus on just
the container edge-profile extraction and precision pouring.
A video demonstrating this method can be found on at
“Autonomous Precision Pouring from Unknown Containers”

IV. RESULTS AND DISCUSSION

A. Volume Profile Estimation Method Comparison

Three representative containers are shown in Figure 7, with
the container classifications along with their final volume error
performance for each maximum volume profile estimation
method. The statistical data is represented using violin plots
showing the data distribution along with box plots consisting
of data minimum and maximum as thin black line, first and
third quartile as solid black line, and the median as white
dot. Figure 7a shows container 1 which is a small flask,
in Figure 7b container 2 is a small cylinder, in Figure 7c
container 3 is a tall flask. For container 1, Figure 7a shows
the training container along with their mixture probabilities.
The second row of Figure 7 shows the final volume error for
each method while pouring 100ml of fluid. For container 1
and container 2 in Figures 7d and 7e each method statistic
was generated using 30 trials for each method, statistics for
container 3 where generated from 30 trials of param, and 10
trials for semi and non-param. For 200ml pours each method
for all three containers were generated from 10 trials each.
In Figure 7 the general trend is that for 100ml pours the
parameterized method usually performed better than semi and
non-parameterized methods, with these two methods being
comparable in performance. However, for the larger volume
200ml pour the semi and non-parameterized methods were
more consistent compared to the 100ml pour and performed
better than the parameterized pour. All of the containers
consistently started with 250ml of fluid before each pour.
Another notable aspect is that better performing methods
usually had a larger pour time than the lower performing
counter parts for the same container and target volume. A
negative example is shown in Figure 8 where the priors are
used from container 1 in Figure 7a. Here Figure 8b shows
each method performance with 30 trials each, and Figure 8c
shows each method with 10 trials each. Note that while the
trend for 100ml is similar to that in Figure 7, the spread of
the semi and non-parametric methods is much greater. This is
an important example as it demonstrates the capacity of the
proposed system when a container is far from the training set
of containers. In both Figures 8b and 8c, the contribution of
the parametric method influences the semi-parametric perfor-
mance making it comparable to the parametric performance.
The parametric method performance varies with the container

as it is performing online system identification, this is evident
in how parametric performed worse for larger volumes for
containers 1 and 2 however improved for container 3. If valid
model priors are known then the performance across container
volumes can be more consistent as seen in the non-parametric
methods with accurate priors. The semi-parametric method
usually interpolates these performances with sufficient overlap
with the highest performing method.

B. Semi-Parametric Estimation for Diverse Containers

It is shown that the semi-parametric combines the qualities
of the other methods by leveraging online system identification
and model priors. Due to the strong priors in Figure 7a the
semi-parametric method Vθ was very close in prediction to
the non-parametric method for container 1. These profiles vary
more for the parametric method and semi-parametric method
when the container is sufficiently far from the training set. The
semi-parametric method was used on a total of 13 containers
pouring target volumes of 100ml with 10 trials each. The
final volumetric error for each container is shown versus each
containers height in Figure 9. The mean and variance is shown
for each container and a Gaussian process is fit with a radial
basis function kernel to demonstrate the increase in error vs
height with associated variance. This trend is attributed to the
fact that the lower maximum velocity used in the trapezoidal
trajectory generator was constant for all containers. This means
that the slowest angular rate was constant for the containers
which reduces the control authority for larger containers. This
can be remedied by making the lower maximum velocity a
function of container height.

In Figure 10 the relationship between final error and final
pour time is shown for the same pours shown in Figure 9.
Over the majority of pours, the performance is largely under
5ml error and between 20 to 45 seconds for 100ml pours.
The main two outliers to are those with largest height as
shown in Figure 9. Therefore with the remedy of making
the lower maximum velocity a function of container height,
larger containers would also be expected to perform within
5ml error. However this remedy while decreasing final error
would also increase the pour time, therefore requiring task
based optimization to determine appropriate parameters for
best performance. In practice, the volume profile for containers
observed before can be stored and utilized as an additional
prior therefore increasing the performance with continued
operation.

V. CONCLUSIONS

We present a system capable of pouring fluids from new
containers accurately and quickly in a single attempt. This
is done by comparing the profile of the new container to
simulated containers pouring fluid with known properties. By
defining the maximum volume profile as the maximum fluid
containable at a given angle, it is asserted that containers with
similar geometries have similar maximum volume profiles.
This closeness in geometry is used to combine priors in
a mixture model to estimate the maximum volume profile

https://www.youtube.com/watch?v=C1UTOSfGuXA&feature=youtu.be
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Figure 7: Container profiles and pour statistics: containers 1, 2 and 3 are 7a, 7b and 7c respectively, with their statistics directly
below each container. Percentages are the mixture probabilities defined in (8). Final volume error statistics are shown for a
100ml target volume in the second row for each method (30 pours each), and for 200ml target volume in the third row (10
pours each). Each method statistics are shown using violin plots for distribution and inset box plot with mean and quartiles.
A total of 360 pours are shown.

required for control. The fluid is detected in the receiving
container using both weight and visual detection of the fluid.
We propose a hybrid controller that accounts for time delay
in the plant and attenuates volumetric error given a specified
volume trajectory from an optimal time, trapezoidal trajectory
generator that accounts for the residual in the volume profile
estimation. We show that by combining online system iden-
tification and model priors through a Gaussian process, we
can maximize performance with the specified system without
tuning parameters for a given container. We show that for
constant minimum, maximum desired volume velocity we can
achieve performance of under 5ml error and between 20 to
45 second pours for the majority of containers. For larger
containers the accuracy can be increased while sacrificing pour
time. We demonstrate this system on the Rethink Robotics
Sawyer manipulator as well as an implementation on the
KUKA LBR iiwa manipulator. Next steps include increasing
the complexity of receiving glass detection as well as relaxing

the stated assumptions by mitigating spillage, and expanding
this implementation to non-symmetric containers.
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